(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
list(Cons(x, xs)) → list(xs)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x) → list(x)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
Cons0(0, 0) → 0
Nil0() → 0
True0() → 0
isEmpty[Match]0(0) → 0
False0() → 0
list0(0) → 1
notEmpty0(0) → 2
goal0(0) → 3
list1(0) → 1
True1() → 1
Nil1() → 4
isEmpty[Match]1(4) → 1
True1() → 2
False1() → 2
list1(0) → 3
True1() → 3
isEmpty[Match]1(4) → 3
(2) BOUNDS(1, n^1)